对于大多数现有的联合学习算法,每一轮都包括最大程度地减少每个客户端的损失功能,以在客户端学习最佳模型,然后在服务器上汇总这些客户端模型。客户端的模型参数的点估计并未考虑到每个客户端估计的模型中的不确定性。但是,在许多情况下,尤其是在有限的数据设置中,考虑到客户模型中的不确定性以实现更准确和健壮的预测是有益的。不确定性还为其他重要任务提供了有用的信息,例如主动学习和分布(OOD)检测。我们提出了一个贝叶斯联合学习的框架,每个客户都使用其培训数据侵入后验预测分布,并提出各种方法,以在服务器上汇总这些特定于客户端的预测分布。由于交流和汇总预测分布可能具有挑战性且昂贵,因此我们的方法基于将每个客户的预测分布提炼成一个深层的神经网络。这使我们能够利用标准联合学习的进步,也可以为贝叶斯联邦学习。与最近试图估算每个客户模型不确定性的最近作品不同,我们的工作也没有做出任何限制性假设,例如客户后分布的形式。我们评估了我们在联合环境中的分类方法,以及在联邦设置中的积极学习和OOD检测,我们的方法在其上优于各种现有的联合学习基线。
translated by 谷歌翻译
Explainable Artificial Intelligence (AI) in the form of an interpretable and semiautomatic approach to stage grading ocular pathologies such as Diabetic retinopathy, Hypertensive retinopathy, and other retinopathies on the backdrop of major systemic diseases. The experimental study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly. Many current CNN-based deep neural networks used for diagnosing retinal disorders might have appreciable performance but fail to pinpoint the basis driving their decisions. To improve these decisions' transparency, we have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images to derive quantifiable and descriptive parameters. The retinal vessel parameters meta-data serve as hyper-parameters for better interpretation and explainability of decisions. The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians. The baseline process involved in the machine learning pipeline through image processing techniques for optic disc detection, vessel segmentation, and arteriole/venule identification.
translated by 谷歌翻译
Soft actuators have attracted a great deal of interest in the context of rehabilitative and assistive robots for increasing safety and lowering costs as compared to rigid-body robotic systems. During actuation, soft actuators experience high levels of deformation, which can lead to microscale fractures in their elastomeric structure, which fatigues the system over time and eventually leads to macroscale damages and eventually failure. This paper reports finite element modeling (FEM) of pneu-nets at high angles, along with repetitive experimentation at high deformation rates, in order to study the effect and behavior of fatigue in soft robotic actuators, which would result in deviation from the ideal behavior. Comparing the FEM model and experimental data, we show that FEM can model the performance of the actuator before fatigue to a bending angle of 167 degrees with ~96% accuracy. We also show that the FEM model performance will drop to 80% due to fatigue after repetitive high-angle bending. The results of this paper objectively highlight the emergence of fatigue over cyclic activation of the system and the resulting deviation from the computational FEM model. Such behavior can be considered in future controllers to adapt the system with time-variable and non-autonomous response dynamics of soft robots.
translated by 谷歌翻译
Automation in farming processes is a growing field of research in both academia and industries. A considerable amount of work has been put into this field to develop systems robust enough for farming. Terrace farming, in particular, provides a varying set of challenges, including robust stair climbing methods and stable navigation in unstructured terrains. We propose the design of a novel autonomous terrace farming robot, Aarohi, that can effectively climb steep terraces of considerable heights and execute several farming operations. The design optimisation strategy for the overall mechanical structure is elucidated. Further, the embedded and software architecture along with fail-safe strategies are presented for a working prototype. Algorithms for autonomous traversal over the terrace steps using the scissor lift mechanism and performing various farming operations have also been discussed. The adaptability of the design to specific operational requirements and modular farm tools allow Aarohi to be customised for a wide variety of use cases.
translated by 谷歌翻译
最近的研究揭示了NLP数据和模型中的不良偏见。但是,这些努力的重点是西方的社会差异,并且无法直接携带其他地质文化背景。在本文中,我们关注印度背景下的NLP公平。我们首先简要说明印度的社会差异斧头。我们为印度背景下的公平评估建立资源,并利用它们来证明沿着某些轴的预测偏见。然后,我们深入研究了地区和宗教的社会刻板印象,证明了其在Corpora&Models中的普遍性。最后,我们概述了一个整体研究议程,以重新定义印度背景的NLP公平研究,考虑印度社会背景,弥合能力,资源和适应印度文化价值的技术差距。尽管我们在这里专注于“印度”,但可以在其他地理文化背景下进行重新连接化。
translated by 谷歌翻译
流行模型是理解传染病的强大工具。但是,随着它们的大小和复杂性的增加,它们可以迅速在计算上棘手。建模方法的最新进展表明,替代模型可用于模拟具有高维参数空间的复杂流行模型。我们表明,深层序列到序列(SEQ2SEQ)模型可以作为具有基于序列模型参数的复杂流行病模型的准确替代物,从而有效地复制了季节性和长期传播动力学。一旦受过培训,我们的代理人可以预测场景比原始模型快几千倍,从而使其非常适合策略探索。我们证明,用博学的模拟器代替传统的流行模型有助于强大的贝叶斯推断。
translated by 谷歌翻译
动力学受部分微分方程(PDE)控制的物理系统在许多领域(从工程设计到天气预报)中找到了应用。从此类PDE中获取解决方案的过程对于大规模和参数化问题的计算昂贵。在这项工作中,使用LSTM和TCN等时间表预测开发的深度学习技术,或用于为CNN等空间功能提取而开发的,用于建模系统动力学,以占主导问题。这些模型将输入作为从PDE获得的连续时间步长的一系列高保真矢量解,并预测使用自动回归的后续时间步长的解决方案;从而减少获得此类高保真解决方案所需的计算时间和功率。这些模型经过数值基准测试(1D汉堡的方程式和Stoker的大坝断裂问题),以评估长期预测准确性,甚至在训练域之外(外推)。在向预测模型输入之前,使用非侵入性的降低订购建模技术(例如深度自动编码网络)来压缩高保真快照,以减少在线和离线阶段的复杂性和所需的计算。深层合奏被用来对预测模型进行不确定性量化,该模型提供了有关认知不确定性导致预测方差的信息。
translated by 谷歌翻译
我们考虑在平均场比赛中在线加强学习。与现有作品相反,我们通过开发一种使用通用代理的单个样本路径来估算均值场和最佳策略的算法来减轻对均值甲骨文的需求。我们称此沙盒学习为其,因为它可以用作在多代理非合作环境中运行的任何代理商的温暖启动。我们采用了两种时间尺度的方法,在该方法中,平均场的在线固定点递归在较慢的时间表上运行,并与通用代理更快的时间范围内的控制策略更新同时进行。在足够的勘探条件下,我们提供有限的样本收敛保证,从平均场和控制策略融合到平均场平衡方面。沙盒学习算法的样本复杂性为$ \ Mathcal {o}(\ epsilon^{ - 4})$。最后,我们从经验上证明了沙盒学习算法在交通拥堵游戏中的有效性。
translated by 谷歌翻译
多养殖养殖具有环境优势,但比单一养殖需要更修剪。我们介绍用于自动修剪的新型硬件和算法。自主系统使用高架摄像头从物理规模的花园测试床中收集数据,利用学识渊博的植物表型卷积神经网络和边界磁盘跟踪算法来评估单个植物分布并每天估算花园的状态。从这个花园状态下,Alphagardensim选择植物自主修剪。训练有素的神经网络检测并靶向工厂上的特定修发点。实验评估了两种与农业机器人龙门系统兼容的定制设计的修剪工具,并通过受控算法进行了自主削减。我们提出了四个60天的花园周期的结果。结果表明,该系统可以自主实现0.94个归一化的植物多样性,并在修剪剪切的同时保持平均冠层覆盖率为0.84,到周期结束时。有关代码,视频和数据集,请参见https://sites.google.com/berkeley.edu/pruningpolyculture。
translated by 谷歌翻译
在本文中,我们为不存在或无限的数据的方差提供了置信序列的扩展。置信序列提供的置信区间在任意数据依赖性停止时间时有效,自然具有广泛的应用。我们首先为有限方差案例的CATONI风格置信序列的宽度建立了一个下限,以突出现有结果的松动性。接下来,我们为数据分布提供了紧密的catoni风格的置信序列,该数据分布有一个放松的〜$ p^{th} - $ arment,其中〜$ p \ in(1,2] $,并加强了有限差异案例的结果〜$ p = 2 $。显示出比使用dubins-savage不等式获得的置信序列更好。
translated by 谷歌翻译